123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- "use strict";
- function _typeof(obj) { "@babel/helpers - typeof"; if (typeof Symbol === "function" && typeof Symbol.iterator === "symbol") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; } return _typeof(obj); }
- Object.defineProperty(exports, "__esModule", {
- value: true
- });
- exports.create = create;
- exports.clone = clone;
- exports.copy = copy;
- exports.identity = identity;
- exports.fromValues = fromValues;
- exports.set = set;
- exports.transpose = transpose;
- exports.invert = invert;
- exports.adjoint = adjoint;
- exports.determinant = determinant;
- exports.multiply = multiply;
- exports.rotate = rotate;
- exports.scale = scale;
- exports.fromRotation = fromRotation;
- exports.fromScaling = fromScaling;
- exports.str = str;
- exports.frob = frob;
- exports.LDU = LDU;
- exports.add = add;
- exports.subtract = subtract;
- exports.exactEquals = exactEquals;
- exports.equals = equals;
- exports.multiplyScalar = multiplyScalar;
- exports.multiplyScalarAndAdd = multiplyScalarAndAdd;
- exports.sub = exports.mul = void 0;
- var glMatrix = _interopRequireWildcard(require("./common.js"));
- function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); }
- function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
- /**
- * 2x2 Matrix
- * @module mat2
- */
- /**
- * Creates a new identity mat2
- *
- * @returns {mat2} a new 2x2 matrix
- */
- function create() {
- var out = new glMatrix.ARRAY_TYPE(4);
- if (glMatrix.ARRAY_TYPE != Float32Array) {
- out[1] = 0;
- out[2] = 0;
- }
- out[0] = 1;
- out[3] = 1;
- return out;
- }
- /**
- * Creates a new mat2 initialized with values from an existing matrix
- *
- * @param {ReadonlyMat2} a matrix to clone
- * @returns {mat2} a new 2x2 matrix
- */
- function clone(a) {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- /**
- * Copy the values from one mat2 to another
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the source matrix
- * @returns {mat2} out
- */
- function copy(out, a) {
- out[0] = a[0];
- out[1] = a[1];
- out[2] = a[2];
- out[3] = a[3];
- return out;
- }
- /**
- * Set a mat2 to the identity matrix
- *
- * @param {mat2} out the receiving matrix
- * @returns {mat2} out
- */
- function identity(out) {
- out[0] = 1;
- out[1] = 0;
- out[2] = 0;
- out[3] = 1;
- return out;
- }
- /**
- * Create a new mat2 with the given values
- *
- * @param {Number} m00 Component in column 0, row 0 position (index 0)
- * @param {Number} m01 Component in column 0, row 1 position (index 1)
- * @param {Number} m10 Component in column 1, row 0 position (index 2)
- * @param {Number} m11 Component in column 1, row 1 position (index 3)
- * @returns {mat2} out A new 2x2 matrix
- */
- function fromValues(m00, m01, m10, m11) {
- var out = new glMatrix.ARRAY_TYPE(4);
- out[0] = m00;
- out[1] = m01;
- out[2] = m10;
- out[3] = m11;
- return out;
- }
- /**
- * Set the components of a mat2 to the given values
- *
- * @param {mat2} out the receiving matrix
- * @param {Number} m00 Component in column 0, row 0 position (index 0)
- * @param {Number} m01 Component in column 0, row 1 position (index 1)
- * @param {Number} m10 Component in column 1, row 0 position (index 2)
- * @param {Number} m11 Component in column 1, row 1 position (index 3)
- * @returns {mat2} out
- */
- function set(out, m00, m01, m10, m11) {
- out[0] = m00;
- out[1] = m01;
- out[2] = m10;
- out[3] = m11;
- return out;
- }
- /**
- * Transpose the values of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the source matrix
- * @returns {mat2} out
- */
- function transpose(out, a) {
- // If we are transposing ourselves we can skip a few steps but have to cache
- // some values
- if (out === a) {
- var a1 = a[1];
- out[1] = a[2];
- out[2] = a1;
- } else {
- out[0] = a[0];
- out[1] = a[2];
- out[2] = a[1];
- out[3] = a[3];
- }
- return out;
- }
- /**
- * Inverts a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the source matrix
- * @returns {mat2} out
- */
- function invert(out, a) {
- var a0 = a[0],
- a1 = a[1],
- a2 = a[2],
- a3 = a[3]; // Calculate the determinant
- var det = a0 * a3 - a2 * a1;
- if (!det) {
- return null;
- }
- det = 1.0 / det;
- out[0] = a3 * det;
- out[1] = -a1 * det;
- out[2] = -a2 * det;
- out[3] = a0 * det;
- return out;
- }
- /**
- * Calculates the adjugate of a mat2
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the source matrix
- * @returns {mat2} out
- */
- function adjoint(out, a) {
- // Caching this value is nessecary if out == a
- var a0 = a[0];
- out[0] = a[3];
- out[1] = -a[1];
- out[2] = -a[2];
- out[3] = a0;
- return out;
- }
- /**
- * Calculates the determinant of a mat2
- *
- * @param {ReadonlyMat2} a the source matrix
- * @returns {Number} determinant of a
- */
- function determinant(a) {
- return a[0] * a[3] - a[2] * a[1];
- }
- /**
- * Multiplies two mat2's
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the first operand
- * @param {ReadonlyMat2} b the second operand
- * @returns {mat2} out
- */
- function multiply(out, a, b) {
- var a0 = a[0],
- a1 = a[1],
- a2 = a[2],
- a3 = a[3];
- var b0 = b[0],
- b1 = b[1],
- b2 = b[2],
- b3 = b[3];
- out[0] = a0 * b0 + a2 * b1;
- out[1] = a1 * b0 + a3 * b1;
- out[2] = a0 * b2 + a2 * b3;
- out[3] = a1 * b2 + a3 * b3;
- return out;
- }
- /**
- * Rotates a mat2 by the given angle
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the matrix to rotate
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2} out
- */
- function rotate(out, a, rad) {
- var a0 = a[0],
- a1 = a[1],
- a2 = a[2],
- a3 = a[3];
- var s = Math.sin(rad);
- var c = Math.cos(rad);
- out[0] = a0 * c + a2 * s;
- out[1] = a1 * c + a3 * s;
- out[2] = a0 * -s + a2 * c;
- out[3] = a1 * -s + a3 * c;
- return out;
- }
- /**
- * Scales the mat2 by the dimensions in the given vec2
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the matrix to rotate
- * @param {ReadonlyVec2} v the vec2 to scale the matrix by
- * @returns {mat2} out
- **/
- function scale(out, a, v) {
- var a0 = a[0],
- a1 = a[1],
- a2 = a[2],
- a3 = a[3];
- var v0 = v[0],
- v1 = v[1];
- out[0] = a0 * v0;
- out[1] = a1 * v0;
- out[2] = a2 * v1;
- out[3] = a3 * v1;
- return out;
- }
- /**
- * Creates a matrix from a given angle
- * This is equivalent to (but much faster than):
- *
- * mat2.identity(dest);
- * mat2.rotate(dest, dest, rad);
- *
- * @param {mat2} out mat2 receiving operation result
- * @param {Number} rad the angle to rotate the matrix by
- * @returns {mat2} out
- */
- function fromRotation(out, rad) {
- var s = Math.sin(rad);
- var c = Math.cos(rad);
- out[0] = c;
- out[1] = s;
- out[2] = -s;
- out[3] = c;
- return out;
- }
- /**
- * Creates a matrix from a vector scaling
- * This is equivalent to (but much faster than):
- *
- * mat2.identity(dest);
- * mat2.scale(dest, dest, vec);
- *
- * @param {mat2} out mat2 receiving operation result
- * @param {ReadonlyVec2} v Scaling vector
- * @returns {mat2} out
- */
- function fromScaling(out, v) {
- out[0] = v[0];
- out[1] = 0;
- out[2] = 0;
- out[3] = v[1];
- return out;
- }
- /**
- * Returns a string representation of a mat2
- *
- * @param {ReadonlyMat2} a matrix to represent as a string
- * @returns {String} string representation of the matrix
- */
- function str(a) {
- return "mat2(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")";
- }
- /**
- * Returns Frobenius norm of a mat2
- *
- * @param {ReadonlyMat2} a the matrix to calculate Frobenius norm of
- * @returns {Number} Frobenius norm
- */
- function frob(a) {
- return Math.hypot(a[0], a[1], a[2], a[3]);
- }
- /**
- * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix
- * @param {ReadonlyMat2} L the lower triangular matrix
- * @param {ReadonlyMat2} D the diagonal matrix
- * @param {ReadonlyMat2} U the upper triangular matrix
- * @param {ReadonlyMat2} a the input matrix to factorize
- */
- function LDU(L, D, U, a) {
- L[2] = a[2] / a[0];
- U[0] = a[0];
- U[1] = a[1];
- U[3] = a[3] - L[2] * U[1];
- return [L, D, U];
- }
- /**
- * Adds two mat2's
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the first operand
- * @param {ReadonlyMat2} b the second operand
- * @returns {mat2} out
- */
- function add(out, a, b) {
- out[0] = a[0] + b[0];
- out[1] = a[1] + b[1];
- out[2] = a[2] + b[2];
- out[3] = a[3] + b[3];
- return out;
- }
- /**
- * Subtracts matrix b from matrix a
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the first operand
- * @param {ReadonlyMat2} b the second operand
- * @returns {mat2} out
- */
- function subtract(out, a, b) {
- out[0] = a[0] - b[0];
- out[1] = a[1] - b[1];
- out[2] = a[2] - b[2];
- out[3] = a[3] - b[3];
- return out;
- }
- /**
- * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)
- *
- * @param {ReadonlyMat2} a The first matrix.
- * @param {ReadonlyMat2} b The second matrix.
- * @returns {Boolean} True if the matrices are equal, false otherwise.
- */
- function exactEquals(a, b) {
- return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3];
- }
- /**
- * Returns whether or not the matrices have approximately the same elements in the same position.
- *
- * @param {ReadonlyMat2} a The first matrix.
- * @param {ReadonlyMat2} b The second matrix.
- * @returns {Boolean} True if the matrices are equal, false otherwise.
- */
- function equals(a, b) {
- var a0 = a[0],
- a1 = a[1],
- a2 = a[2],
- a3 = a[3];
- var b0 = b[0],
- b1 = b[1],
- b2 = b[2],
- b3 = b[3];
- return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3));
- }
- /**
- * Multiply each element of the matrix by a scalar.
- *
- * @param {mat2} out the receiving matrix
- * @param {ReadonlyMat2} a the matrix to scale
- * @param {Number} b amount to scale the matrix's elements by
- * @returns {mat2} out
- */
- function multiplyScalar(out, a, b) {
- out[0] = a[0] * b;
- out[1] = a[1] * b;
- out[2] = a[2] * b;
- out[3] = a[3] * b;
- return out;
- }
- /**
- * Adds two mat2's after multiplying each element of the second operand by a scalar value.
- *
- * @param {mat2} out the receiving vector
- * @param {ReadonlyMat2} a the first operand
- * @param {ReadonlyMat2} b the second operand
- * @param {Number} scale the amount to scale b's elements by before adding
- * @returns {mat2} out
- */
- function multiplyScalarAndAdd(out, a, b, scale) {
- out[0] = a[0] + b[0] * scale;
- out[1] = a[1] + b[1] * scale;
- out[2] = a[2] + b[2] * scale;
- out[3] = a[3] + b[3] * scale;
- return out;
- }
- /**
- * Alias for {@link mat2.multiply}
- * @function
- */
- var mul = multiply;
- /**
- * Alias for {@link mat2.subtract}
- * @function
- */
- exports.mul = mul;
- var sub = subtract;
- exports.sub = sub;
|