codeMan 0c1219796a 测试提交 1 год назад
..
build 0c1219796a 测试提交 1 год назад
examples 0c1219796a 测试提交 1 год назад
node_modules 0c1219796a 测试提交 1 год назад
src 0c1219796a 测试提交 1 год назад
.eslintrc.json 0c1219796a 测试提交 1 год назад
.npmignore 0c1219796a 测试提交 1 год назад
.travis.yml 0c1219796a 测试提交 1 год назад
LICENSE 0c1219796a 测试提交 1 год назад
README.md 0c1219796a 测试提交 1 год назад
TODO.txt 0c1219796a 测试提交 1 год назад
index.js 0c1219796a 测试提交 1 год назад
index_vis.js 0c1219796a 测试提交 1 год назад
package.json 0c1219796a 测试提交 1 год назад
test.py 0c1219796a 测试提交 1 год назад

README.md

fmin Build Status

Unconstrained function minimization in javascript.

This package implements some basic numerical optimization algorithms: Nelder-Mead, Gradient Descent, Wolf Line Search and Non-Linear Conjugate Gradient methods are all provided.

Interactive visualizations with D3 explaining how these algorithms work are also included in this package. Descriptions of the algorithms as well as most of the visualizations are available on my blog post An Interactive Tutorial on Numerical Optimization.

Installing

If you use NPM, npm install fmin. Otherwise, download the latest release.

API Reference

# nelderMead(f, initial)

Uses the Nelder-Mead method to minimize a function f starting at location initial.

Example usage minimizing the function f(x, y) = x2 + y2 + x sin y + y sin x is: nelder mead demo

function loss(X) {
    var x = X[0], y = X[1];
    return Math.sin(y) * x  + Math.sin(x) * y  +  x * x +  y *y;
}

var solution = fmin.nelderMead(loss, [-3.5, 3.5]);
console.log("solution is at " + solution.x);

# conjugateGradient(f, initial)

Minimizes a function using the Polak–Ribière non-linear conjugate gradient method . The function f should compute both the loss and the gradient.

An example minimizing Rosenbrock's Banana function is:

conjugate gradient demo

function banana(X, fxprime) {
    fxprime = fxprime || [0, 0];
    var x = X[0], y = X[1];
    fxprime[0] = 400 * x * x * x - 400 * y * x + 2 * x - 2;
    fxprime[1] = 200 * y - 200 * x * x;
    return (1 - x) * (1 - x) + 100 * (y - x * x) * (y - x * x);
}

var solution = fmin.conjugateGradient(banana, [-1, 1]);
console.log("solution is at " + solution.x);