codeMan 0c1219796a 测试提交 1 ano atrás
..
build 0c1219796a 测试提交 1 ano atrás
examples 0c1219796a 测试提交 1 ano atrás
node_modules 0c1219796a 测试提交 1 ano atrás
src 0c1219796a 测试提交 1 ano atrás
.eslintrc.json 0c1219796a 测试提交 1 ano atrás
.npmignore 0c1219796a 测试提交 1 ano atrás
.travis.yml 0c1219796a 测试提交 1 ano atrás
LICENSE 0c1219796a 测试提交 1 ano atrás
README.md 0c1219796a 测试提交 1 ano atrás
TODO.txt 0c1219796a 测试提交 1 ano atrás
index.js 0c1219796a 测试提交 1 ano atrás
index_vis.js 0c1219796a 测试提交 1 ano atrás
package.json 0c1219796a 测试提交 1 ano atrás
test.py 0c1219796a 测试提交 1 ano atrás

README.md

fmin Build Status

Unconstrained function minimization in javascript.

This package implements some basic numerical optimization algorithms: Nelder-Mead, Gradient Descent, Wolf Line Search and Non-Linear Conjugate Gradient methods are all provided.

Interactive visualizations with D3 explaining how these algorithms work are also included in this package. Descriptions of the algorithms as well as most of the visualizations are available on my blog post An Interactive Tutorial on Numerical Optimization.

Installing

If you use NPM, npm install fmin. Otherwise, download the latest release.

API Reference

# nelderMead(f, initial)

Uses the Nelder-Mead method to minimize a function f starting at location initial.

Example usage minimizing the function f(x, y) = x2 + y2 + x sin y + y sin x is: nelder mead demo

function loss(X) {
    var x = X[0], y = X[1];
    return Math.sin(y) * x  + Math.sin(x) * y  +  x * x +  y *y;
}

var solution = fmin.nelderMead(loss, [-3.5, 3.5]);
console.log("solution is at " + solution.x);

# conjugateGradient(f, initial)

Minimizes a function using the Polak–Ribière non-linear conjugate gradient method . The function f should compute both the loss and the gradient.

An example minimizing Rosenbrock's Banana function is:

conjugate gradient demo

function banana(X, fxprime) {
    fxprime = fxprime || [0, 0];
    var x = X[0], y = X[1];
    fxprime[0] = 400 * x * x * x - 400 * y * x + 2 * x - 2;
    fxprime[1] = 200 * y - 200 * x * x;
    return (1 - x) * (1 - x) + 100 * (y - x * x) * (y - x * x);
}

var solution = fmin.conjugateGradient(banana, [-1, 1]);
console.log("solution is at " + solution.x);